Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.675
Filtrar
1.
Int. j. morphol ; 41(6): 1870-1880, dic. 2023. ilus, tab
Artículo en Inglés | LILACS | ID: biblio-1528799

RESUMEN

SUMMARY: The aim of this study is to reveal the gonadoprotective effects of myricetin (MYC), which has many biological properties, on cisplatin (CP)-induced testicular damage in rats. For this purpose, 40 male Wistar albino rats were divided into 4 groups as Control (group given no treatment), MYC (group given 5 mg/kg/i.p myricetin for 7 days), CP (group given 7 mg/kg/i.p cisplatin at 7th day) and MYC + CP (group given 5 mg/kg/i.p myricetin for 7 days before 7 mg/kg/i.p cisplatin injection). After administrations, testicular tissues of animals were extracted and processed according to tissue processing protocol. Hematoxylin & Eosin staining were performed to evaluate the histopathological changes and Johnsen'sTesticular Biopsy Score (JTBS) was applied and mean seminiferous tubule diameters (MSTD) were measured to compare experimental groups in terms of histopathological changes. Moreover, TLR4, NF-kB, HSP70 and HSP90 expression levels were detected by immunohistochemical staining and the density of immunoreactivity were measured to determine the difference in the expression levels of these factors among groups. Additionally, testicular apoptosis was detected via TUNEL assay. JTBS and MSTD data were significantly lower in CP group compared to other groups and MYC administrations significantly protects testicular tissue against CP-induced damage. Moreover, TLR4, NF-kB, HSP70 and HSP90 expressions and apoptotic cells significantly increased in the CP group (p<0.05). However, MYC administrations exerted a strong gonadoprotective effect on testicular tissue in terms of these parameters in MYC+CP group (p<0.05). According to our results, we suggested that MYC can be considered as a protective agent against cisplatin-induced testicular damage.


El objetivo de este estudio es revelar los efectos gonadoprotectores de la miricetina (MYC), que tiene muchas propiedades biológicas, sobre el daño testicular inducido por cisplatino (CP) en ratas. Para este propósito, se dividieron 40 ratas albinas Wistar macho en 4 grupos: Control (grupo que no recibió tratamiento), MYC (grupo que recibió 5 mg/kg/i.p de miricetina durante 7 días), CP (grupo que recibió 7 mg/kg/i.p de cisplatino al séptimo día) y MYC + CP (grupo que recibió 5 mg/ kg/i.p de miricetina durante 7 días antes de la inyección de 7 mg/ kg/i.p de cisplatino). Después de las administraciones, se extrajeron y procesaron tejidos testiculares de animales según el protocolo de procesamiento de tejidos. Se realizó tinción con hematoxilina y eosina para evaluar los cambios histopatológicos y se aplicó la puntuación de biopsia testicular de Johnsen (JTBS) y se midieron los diámetros medios de los túbulos seminíferos (MSTD) para comparar los grupos experimentales en términos de cambios histopatológicos. Además, los niveles de expresión de TLR4, NF-kB, HSP70 y HSP90 se detectaron mediante tinción inmunohistoquímica y se midió la densidad de inmunorreactividad para determinar la diferencia en los niveles de expresión de estos factores entre los grupos. Además, se detectó apoptosis testicular mediante el ensayo TUNEL. Los datos de JTBS y MSTD fueron significativamente más bajos en el grupo CP en comparación con otros grupos y las administraciones de MYC protegen significativamente el tejido testicular contra el daño inducido por CP. Además, las expresiones de TLR4, NF-kB, HSP70 y HSP90 y las células apoptóticas aumentaron significativamente en el grupo CP (p<0,05). Sin embargo, las administraciones de MYC ejercieron un fuerte efecto gonadoprotector sobre el tejido testicular en términos de estos parámetros en el grupo MYC+CP (p<0,05). Según nuestros resultados, sugerimos que MYC puede considerarse como un agente protector contra el daño testicular inducido por cisplatino.


Asunto(s)
Animales , Masculino , Ratas , Testículo/efectos de los fármacos , Testículo/lesiones , Flavonoides/administración & dosificación , Cisplatino/toxicidad , Flavonoides/farmacología , Inmunohistoquímica , FN-kappa B , Ratas Wistar , Respuesta al Choque Térmico , Etiquetado Corte-Fin in Situ , Receptor Toll-Like 4 , Inflamación , Antineoplásicos/toxicidad
2.
Int. j. morphol ; 41(2): 625-633, abr. 2023. ilus, tab
Artículo en Inglés | LILACS | ID: biblio-1440306

RESUMEN

SUMMARY: One of the reasons for acute kidney damage is renal ischemia. Nevertheless, there are limited protective and therapeutic approaches for this problem. Diacerein is an anti-inflammatory drug characterized by numerous biological activities. We aimed to determine the ameliorative impact of diacerein on renal ischemia/reperfusion injury (I/R) condition, exploring the underlying mechanisms. Twenty-four male rats were allotted into four groups (n= 6): sham group; Diacerein (DIA) group; I/R group, in which a non-crushing clamp occluded the left renal pedicle for 45 min, and the right kidney was nephrectomized for 5 min before the reperfusion process; I/R + diacerein group, injected intraperitoneally with 50 mg diacerein/kg i.m 30 minutes prior to I/R operation. Ischemia/ reperfusion was found to affect renal function and induce histopathological alterations. The flow cytometry analysis demonstrated an elevated expression of innate and mature dendritic cells in I/R renal tissues. Moreover, upregulation in the expression of the inflammatory genes (TLR4, Myd88, and NLRP3), and overexpression of the pro-inflammatory cytokines (IL-1β), apoptotic (caspase-3) and pyroptotic (caspase-1) markers were observed in I/R-experienced animals. The aforementioned deteriorations were mitigated by pre-I/R diacerein treatment. Diacerein alleviated I/R-induced inflammation and apoptosis. Thus, it could be a promising protective agent against I/R.


La isquemia renal es una de los motivos del daño renal agudo. Sin embargo, los enfoques protectores y terapéuticos para este problema son limitados. La diacereína es un fármaco antiinflamatorio caracterizado por numerosas actividades biológicas. Nuestro objetivo fue determinar el impacto de mejora de la diacereína en la condición de lesión por isquemia/ reperfusión renal (I/R), explorando los mecanismos subyacentes. Veinticuatro ratas macho se distribuyeron en cuatro grupos (n= 6): grupo simulado; grupo de diacereína (DIA); grupo I/R, en el que una pinza no aplastante ocluyó el pedículo renal izquierdo durante 45 min, y el riñón derecho fue nefrectomizado durante 5 min antes del proceso de reperfusión; Grupo I/R + diacereína, inyectado por vía intraperitoneal con 50 mg de diacereína/kg i.m. 30 min antes de la operación I/R. Se encontró que la isquemia/ reperfusión afecta la función renal e induce alteraciones histopatológicas. El análisis de citometría de flujo demostró una expresión elevada de células dendríticas innatas y maduras en tejidos renales I/R. Además, se observó una regulación positiva en la expresión de los genes inflamatorios (TLR4, Myd88 y NLRP3) y una sobreexpresión de las citoquinas proinflamatorias (IL-1β), marcadores apoptóticos (caspasa-3) y piroptóticos (caspasa-1) en animales con experiencia en I/R. Los deterioros antes mencionados fueron mitigados por el tratamiento previo a la diacereína I/R. La diacereína alivió la inflamación y la apoptosis inducidas por I/R. Por lo tanto, podría ser un agente protector prometedor contra I/R.


Asunto(s)
Animales , Ratas , Daño por Reperfusión/tratamiento farmacológico , Antraquinonas/administración & dosificación , Enfermedades Renales/tratamiento farmacológico , Antiinflamatorios/administración & dosificación , Células Dendríticas/efectos de los fármacos , Daño por Reperfusión/inmunología , Transducción de Señal , FN-kappa B/metabolismo , Antraquinonas/inmunología , Apoptosis/efectos de los fármacos , Estrés Oxidativo , Receptor Toll-Like 4/metabolismo , Interleucina-1beta/metabolismo , Citometría de Flujo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Inflamación , Inyecciones Intraperitoneales , Enfermedades Renales/inmunología
3.
Int. j. morphol ; 41(1): 308-318, feb. 2023. ilus, tab, graf
Artículo en Inglés | LILACS | ID: biblio-1430503

RESUMEN

SUMMARY: Gastrin plays a vital role in the development and progression of gastric cancer (GC). Its expression is up-regulated in GC tissues and several GC cell lines. Yet, the underlying mechanism remains to be investigated. Here, we aim to investigate the role and mechanism of gastrin in GC proliferation. Gastrin-overexpressing GC cell model was constructed using SGC7901 cells. Then the differentially expressed proteins were identified by iTRAQ analysis. Next, we use flow cytometry and immunofluorescence to study the effect of gastrin on the mitochondrial potential and mitochondria-derived ROS production. Finally, we studied the underlying mechanism of gastrin regulating mitochondrial function using Co-IP, mass spectrometry and immunofluorescence. Overexpression of gastrin promoted GC cell proliferation in vitro and in vivo. A total of 173 proteins were expressed differently between the controls and gastrin- overexpression cells and most of these proteins were involved in tumorigenesis and cell proliferation. Among them, Cox17, Cox5B and ATP5J that were all localized to the mitochondrial respiratory chain were down-regulated in gastrin-overexpression cells. Furthermore, gastrin overexpression led to mitochondrial potential decrease and mitochondria-derived ROS increase. Additionally, gastrin-induced ROS generation resulted in the inhibition of cell apoptosis via activating NF-kB, inhibiting Bax expression and promoting Bcl-2 expression. Finally, we found gastrin interacted with mitochondrial membrane protein Annexin A2 using Co-IP and mass spectrometry. Overexpr ession of gastrin inhibits GC cell apoptosis by inducing mitochondrial dysfunction through interacting with mitochondrial protein Annexin A2, then up-regulating ROS production to activate NF-kB and further leading to Bax/Bcl-2 ratio decrease.


La gastrina juega un papel vital en el desarrollo y progresión del cáncer gástrico (CG). Su expresión está regulada al alza en tejidos de CG y en varias líneas celulares de CG. Sin embargo, el mecanismo subyacente aun no se ha investigado. El objetivo de este estudio fue investigar el papel y el mecanismo de la gastrina en la proliferación de CG. El modelo de células CG que sobre expresan gastrina se construyó usando células SGC7901. Luego, las proteínas expresadas diferencialmente se identificaron mediante análisis iTRAQ. A continuación, utilizamos la citometría de flujo y la inmunofluorescencia para estudiar el efecto de la gastrina en el potencial mitocondrial y la producción de ROS derivada de las mitocondrias. Finalmente, estudiamos el mecanismo subyacente de la gastrina que regula la función mitocondrial utilizando Co-IP, espectrometría de masas e inmunofluorescencia. La sobreexpresión de gastrina promovió la proliferación de células CG in vitro e in vivo. Un total de 173 proteínas se expresaron de manera diferente entre los controles y las células con sobreexpresión de gastrina y la mayoría de estas proteínas estaban implicadas en la tumorigenesis y la proliferación celular. Entre estas, Cox17, Cox5B y ATP5J, todas localizadas en la cadena respiratoria mitocondrial, estaban reguladas a la baja en las células con sobreexpresión de gastrina. Además, la sobreexpresión de gastrina provocó una disminución del potencial mitocondrial y un aumento de las ROS derivadas de las mitocondrias. Por otra parte, la generación de ROS inducida por gastrina resultó en la inhibición de la apoptosis celular mediante la activación de NF-kB, inhibiendo la expresión de Bax y promoviendo la expresión de Bcl-2. Finalmente, encontramos que la gastrina interactuaba con la proteína de membrana mitocondrial Anexina A2 usando Co-IP y espectrometría de masas. La sobreexpresión de gastrina inhibe la apoptosis de las células CG al inducir la disfunción mitocondrial a través de la interacción con la proteína mitocondrial Anexina A2, luego regula el aumento de la producción de ROS para activar NF-kB y conduce aún más a la disminución de la relación Bax/Bcl-2.


Asunto(s)
Animales , Ratones , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patología , Gastrinas/metabolismo , Anexina A2/metabolismo , Mitocondrias/patología , Espectrometría de Masas , FN-kappa B , Técnica del Anticuerpo Fluorescente , Especies Reactivas de Oxígeno , Apoptosis , Línea Celular Tumoral , Inmunoprecipitación , Proliferación Celular , Carcinogénesis , Citometría de Flujo
4.
Int. j. morphol ; 41(1): 79-84, feb. 2023. ilus, graf
Artículo en Inglés | LILACS | ID: biblio-1430536

RESUMEN

SUMMARY: Paracetamol (known as acetaminophen, or APAP) poisoning causes acute liver damage that can lead to organ failure and death. We sought to determine that APAP overdose can augment tumor necrosis factor-alpha (TNF-α)/ nuclear factor kappa B (NF-kB)/induced nitic oxide synthase (iNOS) axis-mediated hepatotoxicity in rats, and the anti-inflammatory polyphenolic compounds, quercetin (QUR) plus resveratrol (RES) can ameliorate these parameters. Therefore, we induced acute hepatotoxicity in rats using APAP overdose (2 g/kg, orally) and the protective group of rats were treated with 50 mg/kg QUR plus 30 mg/kg RES for one week before APAP ingestion. Animals were killed at day 8. APAP poisoning caused the induction of hepatic tissue levels of TNF-α, NF-kB, and iNOS, which were significantly (p<0.05) decreased by QUR+RES. QUR+RES, also inhibited liver injury biomarkers, alanine aminotransferase (ALT) and aspartate aminotransferase (AST). Additionally, a link between liver injury and TNF-α /NF-kB / iNOS axis mediated hepatotoxicity was observed. Thus, the presented data backing the conclusion that intoxication by paracetamol increases TNF-α / NF-kB / iNOS axis -mediated hepatotoxicity, and is protected by a combination of quercetin and resveratrol.


El envenenamiento por paracetamol (conocido como acetaminofeno o APAP) causa daño hepático agudo que puede provocar una insuficiencia orgánica y la muerte. El objetivo de este trabajo fue determinar si la sobredosis de APAP puede aumentar la hepatotoxicidad mediada por el eje del factor de necrosis tumoral alfa (TNF-α)/factor nuclear kappa B (NF-kB)/óxido nítico sintasa inducida (iNOS) en ratas, y si el polifenólico antiinflamatorio compuesto por quercetina (QUR) más resveratrol (RES) pueden mejorar estos parámetros. Por lo tanto, inducimos hepatotoxicidad aguda en ratas usando una sobredosis de APAP (2 g/kg, por vía oral). El grupo protector de ratas se trató con 50 mg/ kg de QUR más 30 mg/kg de RES durante una semana antes de la ingestión de APAP. Los animales se sacrificaron el día 8. El envenenamiento con APAP en el tejido hepático provocó la inducción de niveles de TNF-α, NF-kB e iNOS, que se redujeron significativamente (p<0,05) con QUR+RES. QUR+RES, también inhibió los biomarcadores de daño hepático, la alanina aminotransferasa (ALT) y el aspartato aminotransferasa (AST). Además, se observó una relación entre la lesión hepática y la hepatotoxicidad mediada por el eje TNF-α /NF-kB/iNOS. Por lo tanto, los datos presentados respaldan la conclusión de que la intoxicación por paracetamol aumenta la hepatotoxicidad mediada por el eje TNF-α /NF-kB / iNOS, y está protegida por una combinación de quercetina y resveratrol.


Asunto(s)
Animales , Ratas , Quercetina/administración & dosificación , Enfermedad Hepática Crónica Inducida por Sustancias y Drogas/tratamiento farmacológico , Resveratrol/administración & dosificación , Acetaminofén/toxicidad , Enfermedad Aguda , FN-kappa B/antagonistas & inhibidores , Factor de Necrosis Tumoral alfa/antagonistas & inhibidores , Ratas Sprague-Dawley , Óxido Nítrico Sintasa/antagonistas & inhibidores , Sustancias Protectoras , Quimioterapia Combinada , Sobredosis de Droga
5.
Chinese Journal of Natural Medicines (English Ed.) ; (6): 99-112, 2023.
Artículo en Inglés | WPRIM | ID: wpr-971673

RESUMEN

Osteoarthritis is a prevalent global joint disease, which is characterized by inflammatory reaction and cartilage degradation. Cyasterone, a sterone derived from the roots of Cyathula officinalis Kuan, exerts protective effect against several inflammation-related diseases. However, its effect on osteoarthritis remains unclear. The current study was designed to investigate the potential anti-osteoarthritis activity of cyasterone. Primary chondrocytes isolated from rats induced by interleukin (IL)-1β and a rat model stimulated by monosodium iodoacetate (MIA) were used for in vitro and in vivo experiments, respectively. The results of in vitro experiments showed that cyasterone apparently counteracted chondrocyte apoptosis, increased the expression of collagen II and aggrecan, and restrained the production of the inflammatory factors inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), a disintegrin and metalloproteinase with thrombospondin motifs-5 (ADAMTS-5), metalloproteinase-3 (MMP-3), and metalloproteinase-13 (MMP-13) induced by IL-1β in chondrocytes. Furthermore, cyasterone ameliorated the inflammation and degenerative progression of osteoarthritis potentially by regulating the nuclear factor kappa B (NF-κB) and mitogen-activated protein kinase (MAPK) pathways. For in vivo experiments, cyasterone significantly alleviated the inflammatory response and cartilage destruction of rats induced by monosodium iodoacetate, where dexamethasone was used as the positive control. Overall, this study laid a theoretical foundation for developing cyasterone as an effective agent for the alleviation of osteoarthritis.


Asunto(s)
Animales , Ratas , Condrocitos , FN-kappa B , Ácido Yodoacético , Inflamación , Sistema de Señalización de MAP Quinasas , Apoptosis
6.
Chinese Journal of Natural Medicines (English Ed.) ; (6): 47-57, 2023.
Artículo en Inglés | WPRIM | ID: wpr-971663

RESUMEN

Sepsis-induced uncontrolled systemic inflammatory response syndrome (SIRS) is a critical cause of multiple organ failure. Acute kidney injury (AKI) is one of the most serious complications associated with an extremely high mortality rate in SIRS, and it lacked simple, safe, and effective treatment strategies. Leontopodium leontopodioides (Willd.) Beauv (LLB) is commonly used in traditional Chinese medicine for the treatment of acute and chronic nephritis. However, it remains unclear whether lipopolysaccharide (LPS) affects LPS-induced AKI. To identify the molecular mechanisms of LLB in LPS-induced HK-2 cells and mice, LLB was prepared by extraction with 70% methanol, while a lipopolysaccharide (LPS)-induced HK-2 cell model and an AKI model were established in this study. Renal histopathology staining was performed to observe the morphology changes. The cell supernatant and kidney tissues were collected for determining the levels of inflammatory factors and protein expression by ELISA, immunofluorescence, and Western blot. The results indicated that LLB significantly reduced the expression of IL-6 and TNF-α in LPS-induced HK-2 cells, as well as the secretion of IL-6, TNF-α, and IL-1β in the supernatant. The same results were observed in LPS-induced AKI serum. Further studies revealed that LLB remarkably improved oxidative stress and apoptosis based on the content of MDA, SOD, and CAT in serum and TUNEL staining results. Notably, LLB significantly reduced the mortality due to LPS infection. Renal histopathology staining results supported these results. Furthermore, immunofluorescence and Western blot results confirmed that LLB significantly reduced the expression of the protein related to the NF-κB signaling pathway and NLRP3, ASC, and Caspase-1 which were significantly increased through LPS stimulation. These findings clearly demonstrated the potential use of LLB in the treatment of AKI and the crucial role of the NF-κB/NLRP3 pathway in the process through which LLB attenuates AKI induced by LPS.


Asunto(s)
Animales , Ratones , FN-kappa B/metabolismo , Lipopolisacáridos/efectos adversos , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Interleucina-6/metabolismo , Lesión Renal Aguda/metabolismo , Riñón , Síndrome de Respuesta Inflamatoria Sistémica/patología
7.
International Journal of Oral Science ; (4): 8-8, 2023.
Artículo en Inglés | WPRIM | ID: wpr-971596

RESUMEN

Fusobacterium nucleatum (F. nucleatum) is an early pathogenic colonizer in periodontitis, but the host response to infection with this pathogen remains unclear. In this study, we built an F. nucleatum infectious model with human periodontal ligament stem cells (PDLSCs) and showed that F. nucleatum could inhibit proliferation, and facilitate apoptosis, ferroptosis, and inflammatory cytokine production in a dose-dependent manner. The F. nucleatum adhesin FadA acted as a proinflammatory virulence factor and increased the expression of interleukin(IL)-1β, IL-6 and IL-8. Further study showed that FadA could bind with PEBP1 to activate the Raf1-MAPK and IKK-NF-κB signaling pathways. Time-course RNA-sequencing analyses showed the cascade of gene activation process in PDLSCs with increasing durations of F. nucleatum infection. NFκB1 and NFκB2 upregulated after 3 h of F. nucleatum-infection, and the inflammatory-related genes in the NF-κB signaling pathway were serially elevated with time. Using computational drug repositioning analysis, we predicted and validated that two potential drugs (piperlongumine and fisetin) could attenuate the negative effects of F. nucleatum-infection. Collectively, this study unveils the potential pathogenic mechanisms of F. nucleatum and the host inflammatory response at the early stage of F. nucleatum infection.


Asunto(s)
Humanos , Fusobacterium nucleatum/metabolismo , FN-kappa B/metabolismo , Ligamento Periodontal/metabolismo , Transducción de Señal , Infecciones por Fusobacterium/patología , Células Madre/metabolismo
8.
Journal of Southern Medical University ; (12): 46-51, 2023.
Artículo en Chino | WPRIM | ID: wpr-971493

RESUMEN

OBJECTIVE@#To investigate whether circular RNA circRSF1 regulates radiation-induced inflammatory phenotype of hepatic stellate cells (HSCs) by binding to HuR protein and repressing its function.@*METHODS@#Human HSC cell line LX2 with HuR overexpression or knockdown was exposed to 8 Gy X-ray irradiation, and the changes in the expression of inflammatory factors (IL-1β, IL-6 and TNF-α) were detected by qRT-PCR. The expressions of IκBα and phosphorylation of NF-κB were detected with Western blotting. The binding of circRSF1 to HuR was verified by RNA pull-down assay and RNA-binding protein immunoprecipitation (RIP). The expressions of inflammatory factors, IκBα and the phosphorylation of NF-κB were detected after modifying the interaction between circRSF1 and HuR.@*RESULTS@#Knockdown of HuR significantly up- regulated the expressions of IL-1β, IL-6 and TNF-α, decreased IκBα expression and promoted NF-κB phosphorylation in irradiated LX2 cells, whereas overexpression of HuR produced the opposite changes (P < 0.05). Overexpression or knockdown of circRSF1 did not significantly affect the expression of HuR. RNA pull-down and RIP experiments confirmed the binding between circRSF1 and HuR. Overexpression of circRSF1 significantly reduced the binding of HuR to IκBα and down-regulated the expression of IκBα (P < 0.05). Overexpression of circRSF1 combined with HuR overexpression partially reversed the up-regulation of the inflammatory factors, down-regulated IκBα expression and increased phosphorylation of NFκB in LX2 cells, while the opposite effects were observed in cells with knockdown of both circRSF1 and HuR (P < 0.05).@*CONCLUSION@#circRSF1 reduces IκBα expression by binding to HuR to promote the activation of NF-κB pathway, thereby enhancing radiation- induced inflammatory phenotype of HSCs.


Asunto(s)
Humanos , Células Estrelladas Hepáticas/efectos de la radiación , Interleucina-6 , FN-kappa B , Inhibidor NF-kappaB alfa , Fenotipo , ARN , ARN Circular/metabolismo , Factor de Necrosis Tumoral alfa , Proteína 1 Similar a ELAV/metabolismo
9.
Journal of Southern Medical University ; (12): 1248-1253, 2023.
Artículo en Chino | WPRIM | ID: wpr-987042

RESUMEN

OBJECTIVE@#To investigate the role of the SIRT1/NF-κB pathway in mediating the effect of puerarin against lipopolysaccharide (LPS)-induced acute kidney injury (AKI).@*METHODS@#Fifteen BALB/C mice were randomized into control group, LPS group and puerarin treatment group, and in the latter two groups, the mice were given an intraperitoneal injection of LPS (5 mg/kg), followed by daily injection of normal saline for 3 days or injection of puerarin (25 mg/kg) given 1 h later and then on a daily basis for 3 days. On day 5 after modeling, the kidney tissues were taken for histological observation and detection of cell apoptosis. The renal function indexes including urea nitrogen (BUN), serum creatinine (Scr) and kidney injury molecule 1 (KIM-1) and the levels of tumor necrosis factor (TNF-α) and interleukin 1β (IL-1β) were measured, and the expressions of SIRT1 and NF-κB-p65(acetyl K310) in the renal tissues were detected.@*RESULTS@#Intraperitoneal injection of LPS caused obvious glomerular capillary dilatation, hyperemia, renal interstitial edema, and renal tubular epithelial cell swelling and deformation in the mice. The mouse models of LPS-induced AKI also showed significantly increased renal tubular injury score and renal cell apoptosis (P < 0.01) with increased serum levels of BUN, Scr, KIM-1, TNF-α and IL-1β (P < 0.01), enhanced renal expressions of TNF-α, IL-1β and NF-κB p65(acetyl K310) (P < 0.01) and lowered renal expression of SIRT1 (P < 0.05). Treatment with puerarin effectively alleviated LPS-induced renal interstitial edema and renal tubular epithelial cell shedding, lowered renal tubular injury score (P < 0.01) and renal cell apoptosis rate (P < 0.01), and decreased serum levels of BUN, Scr, KIM, TNF-α and IL-1β (P < 0.01). Puerarin treatment significantly reduced TNF-α, IL-1β and NF-κB p65 (acetyl K310) expression in the renal tissue (P < 0.05) and increased SIRT1 expression by 17% (P < 0.05) in the mouse models.@*CONCLUSION@#Puerarin can effectively alleviate LPS-induced AKI in mice possibly by modulating the SIRT1/NF-κB signaling pathway.


Asunto(s)
Animales , Ratones , Ratones Endogámicos BALB C , FN-kappa B , Lipopolisacáridos , Sirtuina 1 , Factor de Necrosis Tumoral alfa , Lesión Renal Aguda , Modelos Animales de Enfermedad , Edema
10.
Journal of Southern Medical University ; (12): 1002-1009, 2023.
Artículo en Chino | WPRIM | ID: wpr-987014

RESUMEN

OBJECTIVE@#To explore the interaction between Tubulin beta 4B class IVb (TUBB4B) and Agtpbp1/cytosolic carboxypeptidase- like1 (CCP1) in mouse primary spermatocytes (GC-2 cells) and the role of TUBB4B in regulating the development of GC-2 cells.@*METHODS@#Lentiviral vectors were used to infect GC-2 cells to construct TUBB4B knockdown and negative control (NC-KD) cells. The stable cell lines with TUBB4B overexpression (Tubb4b-OE) and the negative control (NC-OE) cells were screened using purinomycin. RT-qPCR and Western blotting were used to verify successful cell modeling and explore the relationship between TUBB4B and CCP1 expressions in GC-2 cells. The effects of TUBB4B silencing and overexpression on the proliferation and cell cycle of GC-2 cells were evaluated using CCK8 assay and flow cytometry. The signaling pathway proteins showing significant changes in response to TUBB4B silencing or overexpression were identified using Western blotting and immunofluorescence assay and then labeled for verification at the cellular level.@*RESULTS@#Both TUBB4B silencing and overexpression in GC-2 cells caused consistent changes in the mRNA and protein expressions of CCP1 (P < 0.05). Similarly, TUBB4B expression also showed consistent changes at the mRNA and protein after CCP1 knockdown and restoration (P < 0.05). TUBB4B knockdown and overexpression had no significant effect on proliferation rate or cell cycle of GC-2 cells, but caused significant changes in the key proteins of the nuclear factor kappa-B (NF-κB) signaling pathway (p65 and p-p65) and the mitogen-activated protein kinase (MAPK) signaling pathway (ErK1/2 and p-Erk1/2) (P < 0.05); CCP1 knockdown induced significant changes in PolyE expression in GC-2 cells (P < 0.05).@*CONCLUSIONS@#TUBB4B and CCP1 interact via a mutual positive regulation mechanism in GC-2 cells. CCP-1 can deglutamize TUBB4B, and the latter is involved in the regulation of NF-κB and MAPK signaling pathways in primary spermatocytes.


Asunto(s)
Animales , Masculino , Ratones , Proteínas de Unión al GTP/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , FN-kappa B/metabolismo , ARN Mensajero , D-Ala-D-Ala Carboxipeptidasa de Tipo Serina/metabolismo , Transducción de Señal , Espermatocitos , Tubulina (Proteína)/genética
11.
Journal of Southern Medical University ; (12): 507-515, 2023.
Artículo en Chino | WPRIM | ID: wpr-986956

RESUMEN

OBJECTIVE@#To explore the mechanism of Yifei Jianpi recipe for improving cigarette smoke- induced inflammatory injury and mucus hypersecretion in cultured human bronchial epithelial cells.@*METHODS@#Serum samples were collected from 40 SD rats treated with Yifei Jianpi recipe (n=20) or normal saline (n=20) by gavage. Cultured human bronchial epithelial 16HBE cells were stimulated with an aqueous cigarette smoke extract (CSE), followed by treatment with the collected serum at different dilutions. The optimal concentration and treatment time of CSE and the medicated serum for cell treatment were determined with CCK-8 assay. The expressions of TLR4, NF-κB, MUC5AC, MUC7, and muc8 at both the mRNA and protein levels in the treated cells were examined with RT- qPCR and Western blotting, and the effects of TLR4 gene silencing and overexpression on their expressions were assessed. The expressions of TNF-α, IL-1 β, IL-6 and IL-8 in the cells were detected using ELISA.@*RESULTS@#At the optimal concentration of 20%, treatment with the medicated serum for 24 h significantly lowered the mRNA and protein expressions of TLR4, NF- κB, MUC5AC, MUC7, and MUC8 in CSE- exposed 16HBE cells, and these effects were further enhanced by TLR4 silencing in the cells. In 16HBE cells with TLR4 overexpression, the expressions of TLR4, NF-κB, MUC5AC, MUC7, and MUC8 were significantly increased after CSE exposure and were lowered following treatment with the medicated serum (P < 0.05). The medicated serum also significantly lowered the levels of TNF-α, IL-1β, IL-6 and IL-8 in CSE-exposed 16HBE cells (P < 0.05).@*CONCLUSIONS@#In the 16HBE cell model of chronic obstructive pulmonary disease (COPD), treatment with Yifei Jianpi recipe-medicated serum improves inflammation and mucus hypersecretion possibly by reducing MUC secretion and inhibiting the TLR4/NF-κB signaling pathway.


Asunto(s)
Humanos , Ratas , Animales , FN-kappa B/metabolismo , Receptor Toll-Like 4/metabolismo , Interleucina-8/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Fumar Cigarrillos/efectos adversos , Interleucina-6/metabolismo , Ratas Sprague-Dawley , Enfermedad Pulmonar Obstructiva Crónica/tratamiento farmacológico , Transducción de Señal , Células Epiteliales/metabolismo , Moco/metabolismo , ARN Mensajero/metabolismo
12.
Chinese Journal of Hepatology ; (12): 594-600, 2023.
Artículo en Chino | WPRIM | ID: wpr-986176

RESUMEN

Objective: To investigate the role of Maresin1 (MaR1) in hepatic ischemia-reperfusion injury (HIRI). Methods: The HIRI model was established and randomly divided into a sham operation group (Sham group), an ischemia-reperfusion group (IR group), and a MaR1 ischemia-reperfusion group (MaR1+IR group). MaR1 80ng was intravenously injected into each mouse's tail veins 0.5h before anesthesia. The left and middle hepatic lobe arteries and portal veins were opened and clamped. The blood supply was restored after 1h of ischemia. After 6h of reperfusion, the mice were sacrificed to collect blood and liver tissue samples. The Sham's group abdominal wall was only opened and closed. RAW267.4 macrophages were administered with MaR1 50ng/ml 0.5h before hypoxia, followed by hypoxia for 8h and reoxygenation for 2h, and were divided into the control group, the hypoxia-reoxygenation group (HR group), the MaR1 hypoxia-reoxygenation group (MaR1 + HR group), the Z-DEVD-FMK hypoxia-reoxygenation group (HR+Z group), the MaR1 + Z-DEVD-FMK hypoxia-reoxygenation group (MaR1 + HR + Z group), and the Con group without any treatment. Cells and the supernatant above them were collected. One-way analysis of variance was used for inter-group comparisons, and the LSD-t test was used for pairwise comparisons. Results: Compared with the Sham group, the levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), interleukin (IL)-1β, and IL-18 in the IR group were significantly higher (P < 0.05), with remarkable pathological changes, while the level in the MaR1 + IR group was lower than before (P < 0.05), and the pathological changes were alleviated. Compared with the Con group, the HR group had higher levels of IL-1β and IL-18 (P < 0.05), while the MaR1 + HR group had lower levels of IL-1β and IL-18 (P < 0.05). Western blot showed that the expressions of caspase-3, GSDME, and GSDME-N were significantly higher in the HR group and IR group than in the other groups; however, the expression was lower following MaR1 pretreatment. The Z-DEVD-FMK exploration mechanism was inhibited by the expression of caspase-3 in HIRI when using MaR1. Compared with the HR group, the IL-1β and IL-18 levels and the expressions of caspase-3, GSDME, and GSDME-N in the HR + Z group were decreased (P < 0.05), while the expression of nuclear factor κB was increased, but following MaR1 pretreatment, nuclear factor κB was decreased. There was no significant difference in the results between the MaR1 + H/R group and the MaR1 + H/R + Z group (P > 0.05). Conclusion: MaR1 alleviates HIRI by inhibiting NF-κB activation and caspase-3/GSDME-mediated inflammatory responses.


Asunto(s)
Ratones , Animales , FN-kappa B/metabolismo , Interleucina-18/metabolismo , Caspasa 3/metabolismo , Hígado/patología , Transducción de Señal , Daño por Reperfusión/metabolismo
13.
China Journal of Chinese Materia Medica ; (24): 879-889, 2023.
Artículo en Chino | WPRIM | ID: wpr-970559

RESUMEN

Acute myocardial infarction seriously endangers the health of people due to its high morbidity and high mortality. Reperfusion strategy is the preferred treatment strategy for acute myocardial infarction. However, reperfusion may lead to additional heart damage, namely myocardial ischemia reperfusion injury(MIRI). Therefore, how to reduce myocardial ischemia reperfusion injury has become one of the urgent problems to be solved in cardiovascular disease. Traditional Chinese medicine(TCM) has the multi-component, multi-channel, and multi-target advantages in the treatment of MIRI, which offers new ideas in this aspect. TCM containing flavonoids has a variety of biological activities and plays a significant role in the treatment of MIRI, which has great research and development application value. TCM containing flavonoids can regulate multiple signaling pathways of MIRI, such as phosphatidylinositol 3 kinase/kinase B(PI3K/Akt) signaling pathway, Janus kinase/signal transducer and activator of transcriptions(JAK/STAT) signaling pathway, adenosine 5'-monophosphate(AMP)-activated protein kinase(AMPK) signaling pathway, mitogen-activated protein kinase(MAPK) signaling pathway, nuclear factor-erythroid 2-related factor 2/antioxidant response element(Nrf2/ARE) signaling pathway, nuclear factor kappa-B(NF-κB) signaling pathway, silent information regulator 1(Sirt1) signaling pathway, and Notch signaling pathway. It reduces MIRI by inhibiting calcium overload, improving energy metabolism, regulating autophagy, and inhibiting ferroptosis and apoptosis. Therefore, a review has been made based on the regulation of relative signaling pathways against MIRI by TCM containing flavonoids, thus providing theoretical support and potential therapeutic strategies for TCM to alleviate MIRI.


Asunto(s)
Humanos , Daño por Reperfusión Miocárdica , Fosfatidilinositol 3-Quinasas , Transducción de Señal , FN-kappa B , Proteínas Quinasas Activadas por AMP , Flavonoides
14.
China Journal of Chinese Materia Medica ; (24): 778-788, 2023.
Artículo en Chino | WPRIM | ID: wpr-970548

RESUMEN

This study aimed to explore the potential mechanism of Berberis atrocarpa Schneid. anthocyanin against Alzheimer's disease(AD) based on network pharmacology, molecular docking technology, and in vitro experiments. Databases were used to screen out the potential targets of the active components of B. atrocarpa and the targets related to AD. STRING database and Cytoscape 3.9.0 were adopted to construct a protein-protein interaction(PPI) network and carry out topological analysis of the common targets. Gene Ontology(GO) and Kyoto Encyclopedia of Genes and Genomes(KEGG) enrichment analyses were performed on the target using the DAVID 6.8 database. Molecular docking was conducted to the active components and targets related to the nuclear factor kappa B(NF-κB)/Toll-like receptor 4(TLR4) pathway. Finally, lipopolysaccharide(LPS) was used to induce BV2 cells to establish the model of AD neuroinflammation for in vitro experimental validation. In this study, 426 potential targets of active components of B. atrocarpa and 329 drug-disease common targets were obtained, and 14 key targets were screened out by PPI network. A total of 623 items and 112 items were obtained by GO functional enrichment analysis and KEGG pathway enrichment analysis, respectively. Molecular docking results showed that NF-κB, NF-κB inhibitor(IκB), TLR4, and myeloid differentiation primary response 88(MyD88) had good binding abilities to the active components, and malvidin-3-O-glucoside had the strongest binding ability. Compared with the model group, the concentration of nitric oxide(NO) decreased at different doses of malvidin-3-O-glucoside without affecting the cell survival rate. Meanwhile, malvidin-3-O-glucoside down-regulated the protein expressions of NF-κB, IκB, TLR4, and MyD88. This study uses network pharmacology and experimental verification to preliminarily reveal that B. atrocarpa anthocyanin can inhibit LPS-induced neuroinflammation by regulating the NF-κB/TLR4 signaling pathway, thereby achieving the effect against AD, which provides a theoretical basis for the study of its pharmacodynamic material basis and mechanism.


Asunto(s)
FN-kappa B , Enfermedad de Alzheimer , Farmacología en Red , Antocianinas , Berberis , Lipopolisacáridos , Simulación del Acoplamiento Molecular , Factor 88 de Diferenciación Mieloide , Enfermedades Neuroinflamatorias , Receptor Toll-Like 4 , Proteínas I-kappa B
15.
China Journal of Chinese Materia Medica ; (24): 770-777, 2023.
Artículo en Chino | WPRIM | ID: wpr-970547

RESUMEN

This paper aimed to study the effect of Erjing Pills on the improvement of neuroinflammation of rats with Alzheimer's di-sease(AD) induced by the combination of D-galactose and Aβ_(25-35) and its mechanism. SD rats were randomly divided into a sham group, a model control group, a positive drug group(donepezil, 1 mg·kg~(-1)), an Erjing Pills high-dose group(9.0 g·kg~(-1)), and an Erjing Pills low-dose group(4.5 g·kg~(-1)), with 14 rats each group. To establish the rat model of AD, Erjing Pills were intragastrically administrated to rats for 5 weeks after 2 weeks of D-galactose injection. D-galactose was intraperitoneally injected into rats for 3 weeks, and then Aβ_(25-35) was injected into the bilateral hippocampus. The new object recognition test was used to evaluate the learning and memory ability of rats after 4 weeks of intragastric administration. Tissues were acquired 24 h after the last administration. The immunofluorescence method was used to detect the activation of microglia in the brain tissue of rats. The positive expressions of Aβ_(1-42) and phosphory protein Tau~(404)(p-Tau~(404)) in the CA1 area of the hippocampus were detected by immunohistochemistry. The levels of inflammatory factors interleukin-1β(IL-1β), tumor necrosis factor-α(TNF-α), and interleukin-6(IL-6) in the brain tissue were determined by enzyme-linked immunosorbent assay(ELISA). Toll-like receptor 4(TLR4)/nuclear factor kappa B(NF-κB)/nucleotide-binding oligomerization domain-like receptors 3(NLRP3) pathway-associated proteins in the brain tissue were determined by Western blot. The results showed that as compared with the sham group, the new object recognition index of rats in the model control group decreased significantly, the deposition of Aβ_(1-42) and p-Tau~(404) positive protein in the hippocampus increased significantly, and the levels of microglia activation increased significantly in the dentate gyrus. The levels of IL-1β, TNF-α, and IL-6 in the hippocampus of the model control group increased significantly, and the expression levels of TLR4, p-NF-κB p65/NF-κB p65, p-IκBα/IκBα, and NLRP3 proteins in the hippocampus increased significantly. Compared with the model control group, the Erjing Pill groups enhanced the new object recognition index of rats, decreased the deposition of Aβ_(1-42) and the expression of p-Tau~(404) positive protein in the hippocampus, inhibited the activation of microglia in the dentate gyrus, reduced the levels of inflammatory factors IL-1β, TNF-α, and IL-6 in the hippocampus, and down-regulated the expression levels of TLR4, p-NF-κB P65/NF-κB P65, p-IκBα/IκBα, and NLRP3 proteins in the hippocampus. In conclusion, Erjing Pills can improve the learning and memory ability of the rat model of AD presumably by improving the activation of microglia, reducing the expression levels of neuroinflammatory factors IL-1β, TNF-α, and IL-6, inhibiting the TLR4/NF-κB/NLRP3 neuroinflammation pathway, and decreasing hippocampal deposition of Aβ and expression of p-Tau, thereby restoring the hippocampal morphological structure.


Asunto(s)
Animales , Ratas , Ratas Sprague-Dawley , FN-kappa B , Inhibidor NF-kappaB alfa , Proteína con Dominio Pirina 3 de la Familia NLR , Galactosa , Interleucina-6 , Enfermedades Neuroinflamatorias , Receptor Toll-Like 4 , Factor de Necrosis Tumoral alfa
16.
China Journal of Chinese Materia Medica ; (24): 202-210, 2023.
Artículo en Chino | WPRIM | ID: wpr-970515

RESUMEN

This study aims to explore the effect of Buyang Huanwu Decoction glycosides on the inflammatory response of apolipoprotein E~(-/-)(ApoE~(-/-)) mice and RAW264.7 cells through nuclear factor kappa-B(NF-κB) signaling pathway. In the in vivo experiment, ApoE~(-/-) mice were fed with high-fat diets for 12 weeks to induce the animal model of atherosclerosis, and 75 μg·mL~(-1) oxidized low-density lipoprotein(Ox-LDL) incubated RAW264.7 cells for 24 h to establish the atherosclerosis cell model. Automatic biochemical analyzer, hematoxylin-eosin(HE) staining, enzyme-linked immunosorbent assay(ELISA), Western blot, and droplet digital polymerase chain reaction(PCR) were used to determine the blood lipid levels, aortic intimal thickness, inflammatory factor content, NF-κB pathway-related proteins, and mRNA expression levels, and evaluate arterial atherosclerotic lesions and anti-atherosclerotic mechanisms of the drug. The model of atherosclerosis was successfully established in ApoE~(-/-) mice after 12 weeks of feeding with high-fat diets. In the model group, the plasma levels of total cholesterol(TC), triglyceride(TG), and low-density lipoprotein cholesterol(LDL-C) were increased(P<0.01), the intima of the blood vessels was thickened, the levels of inflammatory factors tumor necrosis factor-α(TNF-α) and interleukin-6(IL-6) were increased, and the protein and mRNA expressions of NF-κB and inhibitor of NF-κB(IκBα) were significantly increased as compared with the control group. Compared with the model group, the high-dose Buyang Huanwu Decoction glycoside group decreased the plasma levels of TC, TG, and LDL-C, reduced the plaque area and thickness and the content of inflammatory factor TNF-α, and inhibited the protein and mRNA expressions of NF-κB and IκBα, with the effect same as Buyang Huanwu Decoction. In the in vivo experiment, 75 μg·mL~(-1) Ox-LDL stimulated RAW264.7 cells for 24 h to successfully establish a foam cell model. As compared with the control group, the nuclear amount of NF-κB and the protein and mRNA expressions of IκBα in the model group increased. Compared with the model group, the middle-dose and high-dose Buyang Huanwu Decoction glycoside groups decreased the nuclear amount of NF-κB and the protein and mRNA expressions of IκBα. The above results show that the glycosides are the main effective substances of Buyang Huanwu Decoction against atherosclerosis, which inhibit the NF-κB pathway and reduce the inflammatory response, thus playing the role against atherosclerotic inflammation same as Buyang Huanwu Decoction.


Asunto(s)
Ratones , Animales , FN-kappa B/metabolismo , Inhibidor NF-kappaB alfa/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Glicósidos/farmacología , LDL-Colesterol , Aterosclerosis/genética , Transducción de Señal , Inflamación/tratamiento farmacológico , Interleucina-6 , Apolipoproteínas E/farmacología , ARN Mensajero/metabolismo
17.
Chinese Journal of Oncology ; (12): 129-137, 2023.
Artículo en Chino | WPRIM | ID: wpr-969815

RESUMEN

Objective: To investigate the effect of ubiquitin mutation at position 331 of tumor necrosis factor receptor related factor 6 (TRAF6) on the biological characteristics of colorectal cancer cells and its mechanism. Methods: lentivirus wild type (pCDH-3×FLAG-TRAF6) and mutation (pCDH-3×FLAG-TRAF6-331mut) of TRAF6 gene expression plasmid with green fluorescent protein tag were used to infect colorectal cancer cells SW480 and HCT116, respectively. The infection was observed by fluorescence microscope, and the expressions of TRAF6 and TRAF6-331mut in cells was detected by western blot. Cell counting kit-8 (CCK-8) and plate cloning test were used to detect the proliferation ability of colorectal cancer cells in TRAF6 group and TRAF6-331mut group, cell scratch test to detect cell migration, Transwell chamber test to detect cell migration and invasion, immunoprecipitation to detect the ubiquitination of TRAF6 and TRAF6-331mut with ubiquitinof lysine binding sites K48 and K63. Western blot was used to detect the effects of TRAF6 and TRAF6-331mut over expression on the nuclear factor kappa-B (NF-κB) and mitogen activated protein kinase mitogen-activated protein kinase (MAPK)/activating protein-1(AP-1) signal pathway. Results: The successful infection of colorectal cancer cells was observed under fluorescence microscope. Western blot detection showed that TRAF6 and TRAF6-331mut were successfully expressed in colorectal cancer cells. The results of CCK-8 assay showed that on the fourth day, the absorbance values of HCT116 and SW480 cells in TRAF6-331mut group were 1.89±0.39 and 1.88±0.24 respectively, which were lower than those in TRAF6 group (2.09±0.12 and 2.17±0.45, P=0.036 and P=0.011, respectively). The results of plate colony formation assay showed that the number of clones of HCT116 and SW480 cells in TRAF6-331mut group was 120±14 and 85±14 respectively, which was lower than those in TRAF6 group (190±21 and 125±13, P=0.001 and P=0.002, respectively). The results of cell scratch test showed that after 48 hours, the percentage of wound healing distance of HCT116 and SW480 cells in TRAF6-331mut group was (31±12)% and (33±14)%, respectively, which was lower than those in TRAF6 group [(43±13)% and (43±7)%, P=0.005 and 0.009, respectively]. The results of Transwell migration assay showed that the migration numbers of HCT116 and SW480 cells in TRAF6-331mut group were significantly lower than those in TRAF6 group (P<0.001 and P<0.002, respectively). The results of Transwell invasion assay showed that the number of membrane penetration of HCT116 and SW480 cells in TRAF6-331mut group was significantly lower than those in TRAF6 group (P=0.008 and P=0.009, respectively). The results of immunoprecipitation detection showed that the ubiquitin protein of K48 chain pulled by TRAF6-331mut was lower than that of wild type TRAF6 in 293T cells co-transfected with K48 (0.57±0.19), and the ubiquitin protein of K63 chain pulled down by TRAF6-331mut in 293T cells co-transfected with K63 was lower than that of wild type TRAF6 (0.89±0.08, P<0.001). Western blot assay showed that the protein expression levels of NF-κB, p-NF-κB and p-AP-1 in TRAF6-331mut-HCT116 cells were 0.63±0.08, 0.42±0.08 and 0.60±0.07 respectively, which were lower than those in TRAF6-HCT116 cells (P=0.002, P<0.001 and P<0.001, respectively). The expression level of AP-1 protein in TRAF6-HCT116 cells was 0.89±0.06, compared with that in TRAF6-HCT116 cells. The difference was not statistically significant (P>0.05). The protein expression levels of NF-κB, p-NF-κB and p-AP-1 in TRAF6-331mut-SW480 cells were 0.50±0.06, 0.51±0.04, 0.48±0.02, respectively, which were lower than those in TRAF6-SW480 cells (all P<0.001). There was no significant difference in AP-1 protein expression between TRAF6-331mut-SW480 cells and TRAF6-SW480 cells. Conclusion: The ubiquitin site mutation of TRAF6 gene at 331 may prevent the binding of TRAF6 and ubiquitin lysine sites K48 and K63, and then affect the expressions of proteins related to downstream NF-κB and MAPK/AP-1 signal pathways, and inhibit the proliferation, migration and invasion of colorectal cancer cells.


Asunto(s)
Humanos , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Neoplasias Colorrectales/patología , Lisina/metabolismo , FN-kappa B/metabolismo , Factor 6 Asociado a Receptor de TNF/metabolismo , Factor de Transcripción AP-1/metabolismo , Ubiquitina/metabolismo
18.
Chinese Journal of Natural Medicines (English Ed.) ; (6): 540-550, 2023.
Artículo en Inglés | WPRIM | ID: wpr-982723

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease affecting both upper and lower motor neurons in the brain and spinal cord. One important aspect of ALS pathogenesis is superoxide dismutase 1 (SOD1) mutant-mediated mitochondrial toxicity, leading to apoptosis in neurons. This study aimed to evaluate the neural protective synergistic effects of ginsenosides Rg1 (G-Rg1) and conditioned medium (CM) on a mutational SOD1 cell model, and to explore the underlying mechanisms. We found that the contents of nerve growth factor, glial cell line-derived neurotrophic factor, and brain-derived neurotrophic factor significantly increased in CM after human umbilical cord mesenchymal stem cells (hUCMSCs) were exposed to neuron differentiation reagents for seven days. CM or G-Rg1 decreased the apoptotic rate of SOD1G93A-NSC34 cells to a certain extent, but their combination brought about the least apoptosis, compared with CM or G-Rg1 alone. Further research showed that the anti-apoptotic protein Bcl-2 was upregulated in all the treatment groups. Proteins associated with mitochondrial apoptotic pathways, such as Bax, caspase 9 (Cas-9), and cytochrome c (Cyt c), were downregulated. Furthermore, CM or G-Rg1 also inhibited the activation of the nuclear factor-kappa B (NF-κB) signaling pathway by reducing the phosphorylation of p65 and IκBα. CM/G-Rg1 or their combination also reduced the apoptotic rate induced by betulinic acid (BetA), an agonist of the NF-κB signaling pathway. In summary, the combination of CM and G-Rg1 effectively reduced the apoptosis of SOD1G93A-NSC34 cells through suppressing the NF-κB/Bcl-2 signaling pathway (Fig. 1 is a graphical representation of the abstract).


Asunto(s)
Humanos , FN-kappa B/metabolismo , Ginsenósidos/farmacología , Esclerosis Amiotrófica Lateral/genética , Medios de Cultivo Condicionados/farmacología , Superóxido Dismutasa-1 , Enfermedades Neurodegenerativas , Neuronas/metabolismo , Apoptosis
19.
Chinese Journal of Natural Medicines (English Ed.) ; (6): 423-435, 2023.
Artículo en Inglés | WPRIM | ID: wpr-982713

RESUMEN

Acute lung injury (ALI) is a prevalent and severe clinical condition characterized by inflammatory damage to the lung endothelial and epithelial barriers, resulting in high incidence and mortality rates. Currently, there is a lack of safe and effective drugs for the treatment of ALI. In a previous clinical study, we observed that Jinyinqingre oral liquid (JYQR), a Traditional Chinese Medicine formulation prepared by the Taihe Hospital, Affiliated Hospital of Hubei University of Medicine, exhibited notable efficacy in treating inflammation-related hepatitis and cholecystitis in clinical settings. However, the potential role of JYQR in ALI/acute respiratory distress syndrome (ARDS) and its anti-inflammatory mechanism remains unexplored. Thus, the present study aimed to investigate the therapeutic effects and underlying molecular mechanisms of JYQR in ALI using a mouse model of lipopolysaccharide (LPS)-induced ALI and an in vitro RAW264.7 cell model. JYQR yielded substantial improvements in LPS-induced histological alterations in lung tissues. Additionally, JYQR administration led to a noteworthy reduction in total protein levels within the BALF, a decrease in MPAP, and attenuation of pleural thickness. These findings collectively highlight the remarkable efficacy of JYQR in mitigating the deleterious effects of LPS-induced ALI. Mechanistic investigations revealed that JYQR pretreatment significantly inhibited NF-κB activation and downregulated the expressions of the downstream proteins, namely NLRP3 and GSDMD, as well as proinflammatory cytokine levels in mice and RAW2647 cells. Consequently, JYQR alleviated LPS-induced ALI by inhibiting the NF-κB/NLRP3/GSDMD pathway. JYQR exerts a protective effect against LPS-induced ALI in mice, and its mechanism of action involves the downregulation of the NF-κB/NLRP3/GSDMD inflammatory pathway.


Asunto(s)
Humanos , FN-kappa B/metabolismo , Lipopolisacáridos/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Lesión Pulmonar Aguda/metabolismo , Pulmón , Proteínas de Unión a Fosfato/uso terapéutico , Proteínas Citotóxicas Formadoras de Poros/uso terapéutico
20.
Chinese Critical Care Medicine ; (12): 476-481, 2023.
Artículo en Chino | WPRIM | ID: wpr-982617

RESUMEN

OBJECTIVE@#To explore the mechanism of ursolic acid in treating sepsis using myeloid differentiation protein-2 (MD-2) as the research carrier.@*METHODS@#The affinity of ursolic acid and MD-2 was determined by biofilm interferometry technique, and the bonding mode between ursolic acid and MD-2 was tested with the aid of molecular docking technique. Raw 264.7 cells were cultured in RPMI 1640 medium and subcultured was conducted when the cell density reached 80%-90%. The second-generation cells were used for in the experiment. The effects of 8, 40 and 100 mg/L ursolic acid on cell viability were assessed by methyl thiazolyl tetrazolium (MTT) method. Cells were divided into blank group, lipopolysaccharide (LPS) group (LPS 100 μg/L) and ursolic acid group (100 μg/L LPS treatment after addition of 8, 40 or 100 mg/L ursolic acid). The effect of ursolic acid on the release of cytokines nitric oxide (NO), tumor necrosis factor-α (TNF-α) and interleukins (IL-6, IL-1β) were evaluated by enzyme-linked immunosorbent assay (ELISA). The influence of ursolic acid on the mRNA expressions of TNF-α, IL-6, IL-1β, inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) were detected by reverse transcription-polymerase chain reaction (RT-PCR). The implication of ursolic acid on the protein expressions of LPS-Toll-like receptor 4 (TLR4)/MD-2-nuclear factor-κB (NF-κB) pathway were tested by Western blotting.@*RESULTS@#Ursolic acid could bind to the hydrophobic cavity of MD-2 through hydrophobic bond with the amino acid residues of the protein. Therefore, ursolic acid showed high affinity with MD-2 [dissociation constant (KD) = 1.43×10-4]. The cell viability were decreased slightly, with the concentration of ursolic acid increasing, and the cell viability of 8, 40 and 100 mg/L ursolic acid were 96.01%, 94.32% and 92.12%, respectively, and there was no significant difference compared with the blank group (100%). Compared with the blank group, the cytokine level of the LPS group was significantly increased. The level of cytokines were significantly reduced by the treatment of 8, 40 and 100 mg/L ursolic acid, and the higher the concentration, the more obvious effect [compared between 100 mg/L ursolic acid group and LPS group: IL-1β (μmol/L): 38.018±0.675 vs. 111.324±1.262, IL-6 (μmol/L): 35.052±1.664 vs. 115.255±5.392, TNF-α (μmol/L): 39.078±2.741 vs. 119.035±4.269, NO (μmol/L): 40.885±2.372 vs. 123.405±1.291, all P < 0.01]. Compared with the blank group, the mRNA expressions of TNF-α, IL-6, IL-1β, iNOS and COX-2 in the LPS group were significantly increased, and the protein expressions of MD-2, myeloid differentiation factor 88 (MyD88), phosphorylation NF-κB p65 (p-NF-κB p65) and iNOS in the LPS-TLR4/MD-2-NF-κB pathway were significantly up-regulated. Compared with the LPS group, the mRNA expressions of TNF-α, IL-6, IL-1β, iNOS and COX-2 were significantly reduced by the treatment of 100 mg/L ursolic acid bound with MD-2 protein [TNF-α (2-ΔΔCt): 4.659±0.821 vs. 8.652±0.787, IL-6 (2-ΔΔCt): 4.296±0.802 vs. 11.132±1.615, IL-1β (2-ΔΔCt): 4.482±1.224 vs. 11.758±1.324, iNOS (2-ΔΔCt): 1.785±0.529 vs. 4.249±0.811, COX-2 (2-ΔΔCt): 5.591±1.586 vs. 16.953±1.651, all P < 0.01], and the proteins expressions of MD-2, MyD88, p-NF-κB p65 and iNOS in the LPS-TLR4/MD-2-NF-κB pathway were significantly down-regulated (MD-2/β-actin: 0.191±0.038 vs. 0.704±0.049, MyD88/β-actin: 0.470±0.042 vs. 0.875±0.058, p-NF-κB p65/β-actin: 0.178±0.012 vs. 0.571±0.012, iNOS/β-actin: 0.247±0.035 vs. 0.549±0.033, all P < 0.01). However, there was no difference in protein expression of NF-κB p65 among the three groups.@*CONCLUSIONS@#Ursolic acid inhibits the release and expression of cytokines and mediators and regulates LPS-TLR4/MD-2-NF-κB signaling pathway by blocking MD-2 protein, and thus plays an anti-sepsis role.


Asunto(s)
Humanos , Factor de Necrosis Tumoral alfa , Actinas , Ciclooxigenasa 2 , Interleucina-6 , Lipopolisacáridos , Antígeno 96 de los Linfocitos , Simulación del Acoplamiento Molecular , Factor 88 de Diferenciación Mieloide , FN-kappa B , Receptor Toll-Like 4 , Sepsis , Citocinas , Diferenciación Celular , ARN Mensajero
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA